Optimal Selection of Active Suspension Parameters Using Artificial Intelligence

نویسندگان

  • Jamali Faculty of Mechanical engineering, The University of Guilan, Rasht, Iran.
  • Nariman-zadeh Faculty of Mechanical engineering, The University of Guilan, Rasht, Iran.
  • Salehpour Islamic Azad University, Anzali branch, Bandaranzali, Iran.
چکیده مقاله:

In this paper, multi-objective uniform-diversity genetic algorithm (MUGA) with a diversity preserving mechanism called the ε-elimination algorithm is used for Pareto optimization of 5-degree of freedom vehicle vibration model considering the five conflicting functions simultaneously. The important conflicting objective functions that have been considered in this work are, namely, vertical acceleration of seat, vertical velocity of forward tire, vertical velocity of rear tire, relative displacement between sprung mass and forward tire and relative displacement between sprung mass and rear tire. Further, different pairs of these objective functions have also been selected for 2-objective optimization processes. The comparison of the obtained results with those in literature demonstrates the superiority of the results of this work. It is shown that the results of 5-objective optimization include those of 2-objective optimization and, therefore, provide more choices for optimal design of vehicle vibration model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

optimal selection of active suspension parameters using artificial intelligence

in this paper, multi-objective uniform-diversity genetic algorithm (muga) with a diversity preserving mechanism called the ε-elimination algorithm is used for pareto optimization of 5-degree of freedom vehicle vibration model considering the five conflicting functions simultaneously. the important conflicting objective functions that have been considered in this work are, namely, vertical accel...

متن کامل

Optimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations

In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...

متن کامل

Using Artificial Intelligence for Model Selection

We apply the optimization algorithm Adaptive Simulated Annealing (ASA) to the problem of analyzing data on a large population and selecting the best model to predict the probability that an individual with various traits will have a particular disease. We compare ASA with traditional forward and backward regression on computer simulated data. We find that the traditional methods of modeling are...

متن کامل

Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks

In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 4

صفحات  244- 255

تاریخ انتشار 2011-10

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023